Travelling wave solutions of nonlinear evolution equations using the simplest equation method
نویسندگان
چکیده
منابع مشابه
Travelling Wave Solutions for Some Nonlinear Evolution Equations
Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a flat bottom. T...
متن کاملNew Exact Travelling Wave Solutions for Some Nonlinear Evolution Equations
In this paper sub-equation method with symbolic computational method is used for constructing the new exact travelling wave solutions for some nonlinear evolution equations arising in mathematical physics namely,the WBK, Z–K equation, and coupled nonlinear equations . As a result,the traveling wave solutions are obtained include, solitons, kinks and plane periodic solutions. It worthwhile to me...
متن کاملExact Travelling Wave Solutions of Some Nonlinear Nonlocal Evolutionary Equations
Direct algebraic method of obtaining exact solutions to nonlinear PDE’s is applied to certain set of nonlinear nonlocal evolutionary equations, including nonlinear telegraph equation, hyperbolic generalization of Burgers equation and some spatially nonlocal hydrodynamic-type model. Special attention is paid to the construction of the kink-like and soliton-like solutions.
متن کاملExact travelling wave solutions in a nonlinear elastic rod equation
In this paper,an extended mapping method with symbolic computation is developed to obtain new periodic wave solutions in terms of Jacobin elliptic function for nonlinear evolution equations arising in mathematical physics.As a result,many exact travelling wave solutions are obtained which include new solitary wave solutions,triangular and hyperbolic functions.Solutions in the limiting cases hav...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2012
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2012.04.004